

Building the largest mock catalogue of the Milky Way centre in the Near Infrared

Pau Ramos

17 March 2025

JASMINE mission

The upcoming Japanese Near Infrared high-precision astrometric mission

JASMINE mission

The upcoming Japanese Near Infrared high-precision astrometric mission

JASMINE mission

Testing the astrometric solution

In order to test and develop our Solvers we need a Ground Truth to generate mock observations and use as reference

Testing the astrometric solution

In order to test and develop our Solvers we need a Ground Truth to generate mock observations and use as reference

Testing the astrometric solution

Journal of Computational Science 87 (2025) 102554

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

AJAS: A high performance direct solver for advancing high precision astrometry

Konstantin Ryabinin[®]*, Gerasimos Sarras, Wolfgang Löffler, Olga Erokhina, Michael Biermann

Astronomisches Rechen-Institut, Center for Astronomy of Heidelberg University, Mönchhofstr. 12-14, Heidelberg, 69120, Germany

Off-the-shelf models

Bar

Off-the-shelf models

Data driven

Off-the-shelf models

Data driven

Off-the-shelf models

Data driven

Off-the-shelf models

Data driven

Data driven

• 20,897,004 stellar sources

- Good completeness
- Deep

SIRIUS

- Provides low-precision proper motions and parallax for most sources
- Complex surveys with many spurious sources

Leigh et al. 2025, Minniti et al. 2010

Data driven

Step 1: create a complete catalogue of the Galactic centre

Step 1: create a complete catalogue of the Galactic centre

# stars in JASMINE GCS	With Gaia astrometry	<i>ϖ</i> /σ _∞ ≥ 3
~200k	~55k	~43k

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2: obtain the true values necessary to propagate positions into the future

 Step 2: obtain the true values necessary to propagate positions into the future

We need

Hw (at least J&H, ideally, Ks too)______I______b______parallax______pmra______pmdec______radial velocity______

We have

We have it! We have it! We have it! Only for some Only for some Only for some Not really needed

 Step 2: obtain the true values necessary to propagate positions into the future

We can get parallaxes by inverting the distance

We need a probability distribution of distances for each star

 Step 2: obtain the true values necessary to propagate positions into the future

 Step 2: obtain the true values necessary to propagate positions into the future

For the rest, we need to infer it from photometry and parallaxes (proper motions are not helpful)

 Step 2: obtain the true values necessary to propagate positions into the future

• Step 2.1: obtain the Distance and age-bin posterior P.D.F.

Koshimoto	et al. 2021	Table 1 Scale Lengths, Scale Heights, and Local Densities for Thin and Thick Disks						
	Age T (Gyr)	R _d (pc)	z _{d,⊙} (pc)	z _{d,4.5} ^a (pc)	$ ho^{ m MS \ b}_{ m d,\odot}$ ($M_{\odot} \ m pc^{-3}$)	$(M_{\odot}^{ m WD \ b} { m pc}^{-3})$	$n_{ m d,\odot}^{ m RG}$ b (pc ⁻³)	
Thin disk	0-0.15	5000	61	36	5.1×10^{-3}	$5.5 imes 10^{-5}$	6.9×10^{-6}	
	0.15-1	2600	141	85	$5.0 imes 10^{-3}$	$2.2 imes 10^{-4}$	$3.3 imes 10^{-5}$	
	1–2	2600	224	134	3.8×10^{-3}	$2.9 imes 10^{-4}$	$4.2 imes 10^{-5}$	
	2–3	2600	292	175	3.2×10^{-3}	$3.3 imes 10^{-4}$	2.1×10^{-5}	
	3-5	2600	372	223	$5.9 imes 10^{-3}$	$7.8 imes10^{-4}$	$6.5 imes 10^{-5}$	
	5–7	2600	440	264	6.3×10^{-3}	1.0×10^{-3}	6.1×10^{-5}	
	7–10	2600	445	267	1.3×10^{-2}	2.4×10^{-3}	1.3×10^{-4}	
Sum/Mean			329	197	4.2×10^{-2}	5.1×10^{-3}	3.6×10^{-4}	
Thick disk	12	2200	903		$1.7 imes 10^{-3}$	$4.4 imes 10^{-4}$	$9.1 imes 10^{-6}$	

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

Koshimoto	et al. 2021	Table 1 Scale Lengths, Scale Heights, and Local Densities for Thin and Thick Disks						
	Age T (Gyr)	R _d (pc)	z _{d,⊙} (pc)	^z d,4.5 ^a (pc)	$ ho^{ m MS \ b}_{ m d,\odot}$ $(M_{\odot} \ m pc^{-3})$	$(M_{\odot}^{ m WD \ b} { m pc}^{ m -3})$	$n_{ m d,\odot}^{ m RG}$ b (pc ⁻³)	
Thin disk	0-0.15	5000	61	36	5.1×10^{-3}	$5.5 imes 10^{-5}$	6.9×10^{-6}	
	0.15-1	2600	141	85	$5.0 imes 10^{-3}$	$2.2 imes 10^{-4}$	$3.3 imes 10^{-5}$	
	1–2	2600	224	134	3.8×10^{-3}	$2.9 imes 10^{-4}$	$4.2 imes 10^{-5}$	
	2–3	2600	292	175	3.2×10^{-3}	$3.3 imes 10^{-4}$	2.1×10^{-5}	
	3-5	2600	372	223	$5.9 imes 10^{-3}$	$7.8 imes10^{-4}$	$6.5 imes 10^{-5}$	
	5–7	2600	440	264	$6.3 imes 10^{-3}$	$1.0 imes 10^{-3}$	$6.1 imes 10^{-5}$	
	7–10	2600	445	267	$1.3 imes 10^{-2}$	2.4×10^{-3}	1.3×10^{-4}	
Sum/Mean			329	197	4.2×10^{-2}	5.1×10^{-3}	3.6×10^{-4}	
Thick disk	12	2200	903		$1.7 imes 10^{-3}$	$4.4 imes 10^{-4}$	9.1×10^{-6}	

<u>11 components</u> thin disc (7), thick disc, bar/bulge, NSD and NSC

 Step 2: obtain the true values necessary to propagate positions into the future

• Step 2.1: obtain the Distance and age-bin posterior P.D.F.

Koshimoto	et al. 2021	Table 1 Scale Lengths, Scale Heights, and Local Densities for Thin and Thick Disks					
	Age T (Gyr)	R _d (pc)	z _{d,⊙} (pc)	z _{d,4.5} ^a (pc)	$ ho^{ m MS \ b}_{ m d,\odot}$ ($M_{\odot} \ m pc^{-3}$)	$(M_{\odot}^{ m WD \ b} { m pc}^{ m -3})$	$n_{ m d,\odot}^{ m RG}$ b (pc ⁻³)
Thin disk	0-0.15	5000	61	36	5.1×10^{-3}	$5.5 imes 10^{-5}$	6.9×10^{-6}
	0.15-1	2600	141	85	$5.0 imes 10^{-3}$	$2.2 imes 10^{-4}$	$3.3 imes 10^{-5}$
	1–2	2600	224	134	$3.8 imes 10^{-3}$	$2.9 imes10^{-4}$	$4.2 imes 10^{-5}$
	2–3	2600	292	175	3.2×10^{-3}	$3.3 imes 10^{-4}$	$2.1 imes 10^{-5}$
	3-5	2600	372	223	5.9×10^{-3}	$7.8 imes10^{-4}$	$6.5 imes 10^{-5}$
	5–7	2600	440	264	$6.3 imes 10^{-3}$	$1.0 imes 10^{-3}$	$6.1 imes 10^{-5}$
	7–10	2600	445	267	$1.3 imes 10^{-2}$	2.4×10^{-3}	$1.3 imes 10^{-4}$
Sum/Mean			329	197	4.2×10^{-2}	5.1×10^{-3}	3.6×10^{-4}
Thick disk	12	2200	903		$1.7 imes 10^{-3}$	$4.4 imes 10^{-4}$	9.1×10^{-6}

<u>11 components</u> thin disc (7), thick disc, bar/bulge, NSD and NSC

 $P_i(D|J, H, Ks, \varpi) \propto P_i(J, H, Ks, \varpi|D) P_i(D) = P_i(J, H, Ks|D) P_i(\varpi|D) P_i(D)$

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 $P_i(D|J, H, Ks, \varpi) \propto P_i(J, H, Ks, \varpi|D)P_i(D) = P_i(J, H, Ks|D)P_i(\varpi|D)P_i(\varpi|D)P_i(D)$

 Step 2: obtain the true values necessary to propagate positions into the future

• Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 $P_i(D|J, H, Ks, \varpi) \propto P_i(J, H, Ks, \varpi|D)P_i(D) = P_i(J, H, Ks|D)P_i(\varpi|D)P_i(\varpi|D)P_i(D)$

 Step 2: obtain the true values necessary to propagate positions into the future

• Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 Step 2: obtain the true values necessary to propagate positions into the future

• Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 $P_i(D|J, H, Ks, \varpi) \propto P_i(J, H, Ks, \varpi|D)P_i(D) = P_i(J, H, Ks|D)P_i(\varpi|D)P_i(D)$ marginalise mass $P_i(J, H, Ks|D) = \sum P_i(J, H, Ks, mass|D)$

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 $P_i(D|J, H, Ks, \varpi) \propto P_i(J, H, Ks, \varpi|D) P_i(D) = P_i(J, H, Ks|D) P_i(\varpi|D) P_i(D)$

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 $P_i(D|J, H, Ks, \varpi) \propto P_i(J, H, Ks, \varpi|D) P_i(D) = P_i(J, H, Ks|D) P_i(\varpi|D) P_i(D)$

 Step 2: obtain the true values necessary to propagate positions into the future

- Step 2.1: obtain the Distance and age-bin posterior P.D.F.
- Step 2.2: repeat (2.1) for all sources in each bin of the extinction map

 Step 2: obtain the true values necessary to propagate positions into the future

- Step 2.1: obtain the Distance and age-bin posterior P.D.F.
- Step 2.2: repeat (2.1) for all sources in each bin of the extinction map
- Step 2.3: sample the PDF to obtain mock distances to each source

Galactic latitude [deg.]

E(J-Ks)

Galactic longitude [deg.]

Galactic latitude [deg.]

E(J-Ks)

Galactic longitude [deg.]

Galactic longitude [deg.]

Galactic latitude [deg.]

Surot et al. 2020

E(J-Ks)

Galactic longitude [deg.]

Galactic latitude [deg.]

Mock catalogue of the JASMINE window v1.0

 Step 2: obtain the true values necessary to propagate positions into the future

- Step 2.1: obtain the Distance and age-bin posterior P.D.F.
- Step 2.2: repeat (2.1) for all sources in each bin of the extinction map
- Step 2.3: sample the PDF to obtain mock distances to each source
- Step 2.4: use the derived distance to sample the corresponding velocity distribution function of the model (disc, NSD, NSC, bar)

Mock catalogue of the JASMINE window v1.0

Mock catalogue of the JASMINE window v1.0

Conclusions

- Most complete catalogue of NIR stars in the MW centre
- Realistic mock catalogue of the central region
- Probabilistic classification of NSD stars
- <u>Upcoming</u>:
 - Running the method for a wider window and deeper
 - Photo-astrometric distances soon available for ~20M \bigstar
- This mock catalogue will be very useful for JASMINE but also for other missions like ROMAN or even Gaia NIR

Pau Ramos

17 March 2025

Thank you!

Pau Ramos

5 August 2024

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

 Step 2: obtain the true values necessary to propagate positions into the future

Step 2.1: obtain the Distance and age-bin posterior P.D.F.

