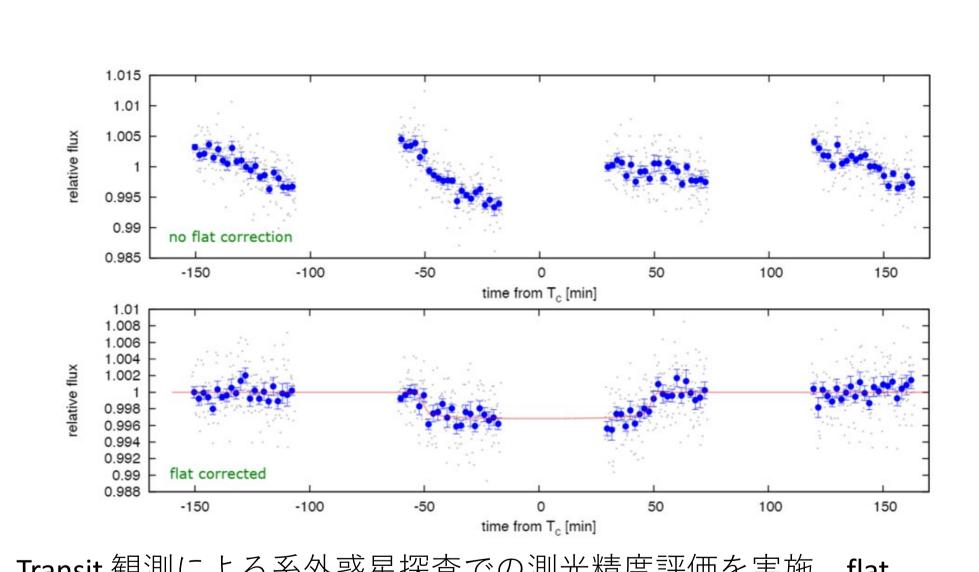

JASMINEのデータ解析ソフトウエアの開発

Development of JASMINE data analysis software


山田良透1)、大澤亮2)、上塚貴史2)、河原創2)、平野照幸3)、河田大介4)、片坐宏一5)、大宮正士6)、辰巳大輔7)、臼井文彦5)、服部公平8)、吉岡聡9)、立川 崇之10)、福井暁彦2)、郷田直輝7)、矢野太平7)、泉浦秀行7)、三好真7)、逢澤正嵩11)、他JASMINEチーム

1京都大学、 2東京大学、 3東京工業大学、4University College London、5ISAS/JAXA、6ABC 、7国立天文台、8統数研、9東京海洋大学、10高知高専、11 上海交通大学

Abstract: JASMINEのダウンリンクデータをカタログにするための、データ解析用ソフトウエアの構築について、進捗状況を説明する。現在、2021年内、MDR(FY2023 Q1を予定)まで、その後の三つのフェーズに分けて、達成目標を設定した。解析ソフトウエアの設計と、実装状況、達成精度の確認に関する状況など、解析ソフトウエア及びシミュレーションを実行するためのグループ(E2Eグループ)の活動状況を合わせて紹介する。

Transit 観測による系外惑星探査での測光精度評価を実施、flat 補正をしない場合(上)、十分な精度が得られず、transitを判断できない。flatの補正をした場合は、transitが起こっていることが判別できる。Flat補正の精度がキーとなる。

, 3.解析パイプラインの開発	
Detectorimage -nx -ny -psfw -fname -overwrite -hdu +_init(nx, ny,p,f,o) +load(fname) +save(fname,overwrite) +make_image(star_list) +get_lhdu() **SimNode -child 1* -parent 11 AstrometricCatalogue -inst.ndarray -list.ndarray +_initdrea.d,s,a,s) +extract() +to_photon_num +construct_ePSF() +xmatch() +get_ePSF_Model() +get_elsf():ndarray +list_stars() +inst.ndarray +_initdrea.d,s,a,s) +time -list.ndarray +_init(t +make_distortion_model() +astrometric_solution()	position © 3 Extract convert construct ePSF xmatch Distortion model S:Astrometric solution
解析パイプラインのクラス図 anAstrometricCatalogue 1 * anOnTheSkyPositions child 1 * aStellarImages child 1 * aDetectorImage	JASMINEは、多数回の観測結果を統計処理して、目標精度を達成する。各ステップでのデータの数が膨大であり、これらを処理するためのパイプラインの開発を、並行して行っている。上は、そのソフトウエアの設計を示している。
解析パイプラインオブジェクト図	

4.開発計画

/	T• /]/	-											
	実装レベル	Due date Step 1(4mas程度達成)					Step 2(1mas程度達成)				Step 3(25µas達成)	パイプライン	
			検出器	WFE	その他	指向擾乱	フラット	検出器ノイズ	カタログ	歪	視野数	運動解析	
	Level 1	2021/Dec	1個、	2枚鏡系 設計値		ランダム	ランダムの 影響評価	カタログ値	銀中の密度考慮	多項式、時間 一定	4	ランダムな位置ずれ に対する精度達成	パイプライン設計
	Level 2	2022/Mar				パワースペクトル	補正精度の 検討	文献值	銀中カタログ	時間変動入り			総計算量評価
		2022/Jun	4個(設置精度考慮)				補正の実装			マッピング方 法検討、 G aia 星の数・精度	定値反		運用最適化
		2022/Sep	歪		迷光								パイプライン実装
		2022/Dec	(補正方法)		星の色								計算機コスト評価
	Level 3	L(2028)	ハードウェ	アメーカか	らの予測	値を反映		実測値反映	暗い星が作る背景				
		2032						実データによる	モデルの修正				
1													

ステップごとの精度評価は、1で示した通りここに示す開発計画Level 1の範囲で、ミッション達成の目標値が確認された。今後、考えうる誤差要因を順次取り入れて、必要な精度目標 を達成できることを確認し、必要なキャリブレーション方法について検討を進めてゆく。 Heidelberg大学ARIおよびバルセロナ大学との共同研究を行う予定である。 2032 カタロ グ公開予定