2021/1/19-20 CfCAユーザーズミーティング

天の川銀河の動力学構造研究の進展

Today's Talk

- 1. 天の川銀河研究の意義:太陽系起源"3W1H"
- 2. Gaia成果:シミュレーション研究の貢献
- 3. 渦状腕構造の新たなパラダイム
- 4. 銀河円盤の物質混合イベント:棒状構造形成
- 5. シミュレーション研究への要求

The Gaia's Sky (ESA/DPAC)

(Baba, Saitoh et al. 2017, MNRAS, 464, 246)

(国立天文台 JASMINEプロジェクト)

天の川銀河 = 太陽系と直接的につながる唯一無二の銀河

Big Bang → 銀河形成進化 (星形成/元素合成) → 太陽系・地球・生物の誕生

中心核バルジ

• We are here.

渦状腕

10²

銀河考古学・近傍宇宙論 (e.g. Freeman & Bland-Hawthorn 2002)

恒星系円盤 (厚い円盤+薄い円盤)

Galactic-scale Hydro. Sim.

Fujimoto, Krumholz, Tachibana (2018)

太陽系の隕石組成に 銀河化学進化情報が刻まれる (e.g. Clayton 1997)

Nittler & Ciesla, 2016, ARA&A

太陽系の起源 "3W1H"

Where: どこで誕生したのか? e.q. R ~ 3 kpc, 6 kpc? What : なにによって移動してきたのか? e.g. bar / spiral / GMC? When :いつ移動してきたのか? e.g. 4.6 Ga, 100 Ma? How : どのように移動してきたのか? e.g. fast, slow, wander?

野望:これらの問いに銀河動力学 (+ 化学進化) から答えたい

(そのために、天の川銀河の研究をしている。私は。)

= 銀河系円盤(恒星系円盤)における大局的な混合過程の理解

Efficient Migration of the Sun via "Dynamic" Spiral + "Slowing" Bar

Spiral Encounters & Snowball Earth Events

2. Gaiaの成果: "quick" review

Astrometric Satellite "GAIA" launched 19th Dec. 2013

Gaia Revolution — Astrometry (位置天文観測) main baryonic component = "Stars" Gaia \rightarrow 1.3B stars's 6D phase space info. (α,δ,ϖ,μ_a,μ_δ,ν_r) DR1 (2016/9) DR2 (2018/4) **EDR3 (2020/12/3)** ← *Now, here!* ⊿ϖ ~ 25 µas 質~2桁 ⊿µ ~ 25 µas/yr 量~4桁 LOS vel. (RVS) DR3 (2022) Final (TBD) \rightarrow global-scale galactic dynamics

reveal bar / spiral structures & stellar evolution Gaia (2013~) ~10 uas; 1.3B d <~ 5 kpc

Sun

d <~ 100 pc

Norma

Hipparcos (1989~1992) ~1 mas; 120K

courtesy X. Luri and A. Robin Rix & Bovy, A&ARv, 21, 61, (2013)

Hipparcosが描き出した天の川

世界初のスペース位置天文観測

1989-1993

ESA

118,218 stars Hw < 12等級 d < 100 pc

ωケンタウリ (球状星団)

アンドロメダ銀河M31 さんかく座銀河M33

47 Tucanae

大マゼラン雲 小マゼラン雲

© ESA/Hipparcos/J. de Bruijne

Gaiaが描き出した"動く"天の川

2018年4月データ公開 (Gaia DR2) 約13億の星の位置・速度測定 (精度 0.02 - 2 mas) G <~ 20等級; d <~ 5 kpc

多数の変光星 (候補)の発見

- セファイド:約1万個
- こと座RR型:約14万個
- その他

© ESA/Gaia

9 Gaia Collaboration, Brown et al., 2018, A&A

kpc-scale velocity fields & rich substructures in the local velocity field

Gaia Collaboration, Katz et al., A&A, 616, A11, (2018)

馬場淳一@CfCA UM 2021/1/20

"Trimodal" Hercules stream due to bar resonances

Asano, Fujii, **JB** et al. 2020, MNRAS

reproduced the "faint" substructures of the Hercules stream. compare Gaia DR2 with N-body sim. -> $\Omega_{bar} \sim 40-45$ km/s/kpc

Galactic rotation from Cepheids with Gaia DR2^{CICA UM 2021/1/20} and effects of non-axisymmetry

Kawata, Bovy, Matsunaga, **JB**, 2019, MNRAS

using distance & velocities of 218 Cepheids

MCMC fitting of axisymmetric disk kinematic model (i.e. asymmetric drift eq.)

local circular velocity: $Vc(R_0) = 236\pm3 \text{ km/s}$ Sun's peculiar velocity: $(U_{\odot},V_{\odot}) = (12.4\pm0.7,7.7\pm0.9) \text{ km/s}$

using mock data of N-body/SPH sim. (Baba+2018, ATERUI-II)

systematic uncertainty of Vc ~ 6 km/s due to bar/spiral structures

Galactic Bar Resonances Inferred from Kinematically Hot Stars

Kawata, **JB** et al. arXiv:2012.05890

6D位相空間情報 (Gaia) + 重力場 (仮定) \rightarrow 星の軌道情報 (作用積分)、軌道共鳴情報 J_Rがある程度大きな軌道の星はバーの影響が選択的によく反映される (渦状腕の影響が弱い) \rightarrow バーの力学パラメータ推定が可能, Ω_{bar} ~ 34 or 42 km/s/kpc

N-body/SPH action space (**JB** & Kawata 2020, ATERUI-II) Gaia EDR3 action space Resonance trapping

Gaia Data Release Scenario

see https://www.cosmos.esa.int/web/gaia/release

Early DR3 (third quarter of 2020) ← 昨年末12/3!

- Improved astrometry (positions, parallaxes, proper motions)
- Improved photometry (integrated G, GBP, GRP)
- ものすごく新たな観測データというよりは、DR2の精度を向上させたEDR3を公開

DR3 (first half of 2022) ← 来年の前半 (1年半後?)

- Object classification and astrophysical parameters, together with BP/RP spectra and/ or RVS spectra they are based on, for spectroscopically and (spectro-)photometrically well-behaved objects.
- Mean radial velocities for stars with available atmospheric-parameter estimates.
- Variable-star classifications together with the epoch photometry used for the stars.
- Solar-system results with preliminary orbital solutions and individual epoch observations. 変光星・(位置天文学的)連星
- Non-single stars.
- Quasars and Extended Objects results
- An additional data set, called the Gaia Andromeda Photometric Survey (GAPS), consisting of the photometric time series for *all* sources located in a 5.5 degree radius field centred on the Andromeda galaxy.

3. 渦状腕構造

動的渦状腕モデル Baba et al. 2013, ApJ Baba 2015, MNRAS, Dobbs & Baba, 2014, PASA (review) 渦状腕モデルの観測的検証法 Baba et al. 2015, PASJ Baba et al. 2016, MNRAS Gaiaデータによる検証 (w/ ATERUI) Baba et al. 2018, ApJ Miyachi et al (JB). 2019, ApJ Kawata, JB et al. 2018, MNRAS 16

- 渦状腕=実体(常に同じ星が渦状腕を構成)をすると
- 差動回転によりぐるぐるに巻き込まれる

(e.g 宇宙年齢の間に~40巻き)

- 現実の渦巻銀河(~1,2巻き)

:) 渦状腕を実体と考えると、現実の渦巻 銀河のゆるい巻き込みを説明できない

※平坦な回転曲線=差動回転 (点Pは点Qの2倍の回転周期)

実際の銀河:~1巻

これは「自己重力を無視」した場合の議論 実際には、自己重力と差動回転の影響で、実体的な腕構造は、形 成・破壊を繰り返す (Baba et al. 2013) → **動的渦状腕モデル**

see also Michikoshi & Kokubo (2015,2016,2018,2020)

「動的渦状腕」の名称について

- 国内外で定着しつつある名称
- 伝統的には "transient, recurrent spiral" or "transient spiral" (Sellwood & Carlberg 1984) と呼ばれることが多いが、単なる非定常 というよりは、星の運動の集団同期などの協同現象を扱う「非線形科 学」的側面を強調したいと、指導教官の和田桂一氏(鹿児島大)と思索。 ※ Baba et al. 2013では "Non-Steady Spiral" としてある
- 「動的平衡」(福岡伸一)に触発され、「動的平衡渦状腕(dynamic equilibrium spiral) 」(= 非定常平衡状態) と呼ぶことにした。
 - 2013年の夏の学校の招待講演で利用した和訳
 - Dobbs & Baba (2014) review paperで利用
- ただし、最近は単に「動的渦状腕(dynamic spiral)」と言っている。

木楽舎

渦状腕構造論:密度波 vs. 動的渦状腕

動的渦状腕モデル

銀河回転周期(~数100Myr)で、

ASURA (T.R. Saitoh) CfCA XT-4/XC-30

~Gyrの間、剛体回転する 安定的パターン("仮説")

密度波モデル

シミュレーションで 再現した研究はない

Gas flow: move across or along arms?

22

馬場淳一@CfCA UM 2021/1/20

How do different spiral models impact the GMC pop.?

"Disrupting" Perseus arm? (w/ GaiaDR1)

24

The "Stellar" Local arm? (w/ GaiaDR2)

4. 棒状構造

S.

Norma

mnA eun

Baba & Kawata, 2020, MNRAS, 492, 4500 Baba, Kawata & Schonrich, 2020, submitted

First "direct" measurement of the Galactic Bar

Anders et al., 2019, A&A, 628, A94

https://sci.esa.int/web/gaia/-/61459-gaia-starts-mapping-our-galaxy-s-bar

現在の動力学構造は概ねわかってきたが、形成時期・進化史は不明

✓ バーの理解の現状と課題:

- 形 状:半長径 ~5 kpc、角度 ~27° Boxy/Peanut/X-形状
- 角速度:~40±5 km/s/kpc (Sanders et al. 2019, Bovy et al. 2019; Asano, Fujii, **JB** et al. 2020; Kawata, **JB** et al. arXiv:2012.05890)
- 形成時期:~2—8 Gyr ago ???
- 進化過程: BPX形状への遷移時期???
- ✓ バー = 円盤銀河の最も強い非軸対称構造。
 - - = 銀河円盤進化を支配

(太陽系の軌道移動にも関連?? Baba in prep.)

バー形成: Gaia-Encelauds (銀河合体) イベントに 並ぶ「2大イベント」の一つ

バー形成の「観測的」履歴

- バー形成:銀河円盤の不安定性などの起因する動力学現象
 - e.g. Sellwood & Wilkinson, 1993, RPPh, 56, 173
- → 基本的にはすべての年齢の円盤星が寄与する
- → バーの年齢 ≠ バーを構成する星 (e.g. Wozniak 2007)

バーが形成すると銀河にどういう影響を及ぼすのか? その影響はどのような観測量にどのような「履歴」を残すのか?

N-body/SPHシミュレーション研究が必須

研究例: Baba & Kawata (2020); Baba, Kawata & Schoenrich, submit.

N-body simulation of bar formation (Baba 2015)

銀河系の"中心核ディスク" (中心<~200 pc)

WISE 3.4 & 4.6 um (Ness & Lang 2016)

バー形成:ガス流入→スターバースト→中心核ディスク形成

バー形成 (t ~ 1.5 Gyr) <mark>直後からBPXバルジ</mark>が出現

- バー形成"直後"にbar bucklingを経ずにBPXバルジができた ← 速い!
- 鉛直方向の軌道共鳴で跳ね上がっている (e.g. Combes et al. 1990; Quillen 2002; Quillen et al. 2014)
- 通常、bar bucklingでBPXバルジ形成はバー形成から~2-3Gyr後 (e.g. Debattista et al. 2006)
- 先行研究でもN体/ガス系ではbar bucklingが起こらない (e.g. Berentzen et al. 1998, 2007)

バー形成後にバー領域の星形成率は急低下

"bar quenching"

see also Spinoso et al. (2017), Khopeskov et al. (2018) Donohoe-Keyes et al. (2019) バー形成 バー領域のガスを中心に落とす 1) 中心スターバースト → NSD形成 = バー形成期/後に誕生した星が NSDを占める 2) バー領域のSF停止 → BPXに跳ね上がる星の減少 = バー形成前に誕生した星が

BPXバルジを占める

JB, Kawata, & Schonrich, 2020b, in prep. ASURA+ATERUI-II

バー形成前にバー領域で誕生した星がBPXバルジに跳ね上がる

バー形成によるガス分布・星形成活動の変化で NSDとBPXの星の年齢分布が相補的

NSD バー形成"期/後"に誕生した星

Baba & Kawata 2020, MNRAS

観測した星がどの銀河構造に 属するのかを判別するには、 位置・速度情報(位置天文観 測情報) が必要

.......

バー形成"前"に誕生した星

Baba, Kawata, Schonrich, in prep.

BPX bulge

NSD星とBPX星の年齢分布でバー形成時期を挟み撃ち推定

ATERUI-II x ASURA x 位置天文観測

Gaia Science: spiral dynamics, bar dynamics Sim:: 理論予測・データ解釈に活躍 Baba et al. (2018) — Gaia DR1 Kawata, JB et al. (2019) — Gaia DR2 Kawata, JB et al. (2020) — Gaia EDR3 (Kawata, JB et al. (2018) — Gaia DR2) (Miyachi, DK, JB et al. (2019) — Gaia DR2 & VLBI) **JASMINE** Science: bar formation Sim.: 理論予測 Baba & Kawata (2020)

Baba, Kawata & Schoenrich, submitted

(Baba et al. in prep. — Solar migration)

位置天文観測からシミュレーション研究への要求

N-body sim.: e.g. Fujii, JB et al. (2018, 2019); ガスなし Gaiaの方が多い!!→ ~10億粒子クラス以上の計算 渦状腕が弱い → ガス/SF入り計算

N-body+SPH sim.: e.g. Baba et al. (2017); DMは外場 バーの長時間力学進化 (bar-DM相互作用) → DMをN-bodyで計算 観測は限定された星種族

→ SF/FB (e.g. Saitoh & Makino 2009)、ガス降着 (e.g. JB & Kawata 2020) 観測との比較情報次元 (位置・速度・年齢 + 元素組成 = 多次元情報)

→ 化学進化, chemical tagging e.g. CELib (Saitoh 2017; Hirai & Saitoh 2017) 星種族によって運動状態が異なる (年齢-速度分散関係)

→ 分子雲スケール程度を分解する分解能 (Kumamoto, JB, Saitoh 2017)
 N-body(+SPH) sim.のデメリット = 特定のターゲットを再現するのが大変

観測から天の川銀河を理解したい → 観測に合う理論 (動力学) モデルがほしい

→ N-body+M2M法 (ただし、ガスいりの計算には適用できない?)

多数のN-body/SPH sim.から機械学習でモデル探査?

Star-by-Star sim.: e.g. "SIRIUS project" (平居、藤井、斎藤) 銀河内での星団形成進化 → 連星分布、星団破壊からフィールド星へ変化

→ 無衝突系-衝突系ハイブリッドスキーム ASURA+BIRDGE (Fujii+2021) Star-by-StarのSF/FBレシピ (e.g. Hirai+2020)

渦状腕動力学:星-ガス相互作用の理解は不十分

see also レビュー論文 Dobbs & Baba, 2014, PASA, 31, 35

© Junichi Baba

arm type	起源	パターン速度	寿命	ガスの運動と 渦状腕維持への役割
unbarred m=2	バー形成直前 (Fujii et al.2018)	$\Omega_{\rm spiral} \sim {\rm const.}$	~100 Myr	??
barred m=2	星円盤のSWA+バー駆動 (e.g. Baba 2015)	$\Omega_{\rm spiral} = \Omega$ for R>1.5R _{bar} (e.g. Baba 2015)	~100 Myr (e.g. Baba 2015)	渦状腕ポテンシャルの底に集積 (Baba et al. 2016). 渦状腕維持に冷却として重要?? (Schwarz 1981)
tidal m=2	潮汐相互作用 (e.g. Pettitt et al. 2016)	$\Omega_{ m spiral} < \sim \Omega$ (e.g. Dobbs et al. 2010; Oh et al. 2015;Pettitt et al. 2016)	~1 Gyr (e.g. Oh et al. 2008; Struck et al. 2011; Pettitt et al. 2016)	渦状腕の片側から流入し銀河衝撃 波(e.g. Pettitt+2016). <mark>渦状腕維持に重要??</mark>
multi-armed	星円盤の局所SWA成長 (e.g. Fujii et al. 2011; Baba et al. 2013)	$\Omega_{spiral} = \Omega$ every radius (e.g. Baba et al. 2013)	~100 Myr (e.g. Fujii et al. 2011; Baba et al. 2013)	渦状腕ポテンシャルの底に集積 (Dobbs & Bonnell 2008; Wada et al. 2011). 渦状腕維持に重要 ではない (Fujii, Baba et al. 2011).
flocculent	ガスの局所的重力不安定? (Mueller & Arnett 1976; Gerola & Seiden 1978)	Ω _{spiral} =Ω (?) 39	<30 Myr?	渦状腕形成に本質的?

N-body + M2M法 (made-to-measure)

対象の観測量(e.g. 密度分布、視線速度分布)に合うように、N-body simの各粒子の重み(質量)を計算中に徐々に調整する方法 (Syer & Tremaine 1996; see also de Lorenzi+2007; Hunt & Kawata 2013)

Machine learning of gaseous I-v features

Machine learning of gaseous I-v features (2)

天体が円運動をすると仮定して距離を推定(運動学的距離法)

→ 運動学的距離は非円運動などにより~kpcの系統誤差を生じる可能性 (観測的宇宙論の赤方偏移空間の"Finge-of-God"と類似の現象; Baba+2009)

まとめ — 位置天文学観測の立場から

★ 科学的意義:天の川銀河 = 太陽系と直接的につながる唯一無二の銀河

太陽系の起源 "3W1H" (Where, What, When, How) = 銀河円盤の「物質混合」問題 → 渦状腕・棒状構造などの非軸対称動力学の理解が本質的に重要

★ Gaia+大規模分光サーベイによる天の川銀河研究の革新

広域 (>5 kpc) に亘る数億個の星の6D位相空間情報 = "observed" N-body data!

→ 星の軌道推定 (e.g. action-angle)、年齢推定精度の向上、高精度元素組成情報 (多次元)

★ Powers of ATERUI x ASURA

渦状腕構造の新たなパラダイム構築 (動的渦状腕モデル; Baba+2013) に貢献

→「定常・平衡」から「非定常・非平衡」へ ("複雑系"銀河物理学!?)

Gaiaの "observed" N-bodyの予測・解釈に貢献

JASMINE銀河中心考古学の開拓 = 「中心核バルジ」から天の川銀河の歴史を紐解く

★ シミュレーション研究への期待

すべての星種族を観測できない; 星団形成→破壊→field星・連星分布の予測

→ SF/FB/化学進化/ガス降着を考慮した超高分解能 (<1 pc; ~1 Msun) 計算

ASURA x BRIDGE; SIRIUS Project (Hirai, Fujii, Saitoh) に期待

観測データにシミュレーションをフィットする(観測から動力学モデルを構築する)

 \rightarrow *N*-body+M2M法

機械学習法などによるモデル探査 (多数の良質なシミュレーションが必須)

補足資料

渦状腕研究の"再"ブーム

~1960s: 渦状腕構造論黎明期 (B. Lindblad, J. Oort) 1960s~70s: 線形理論 (密度波理論1964/銀河衝撃波理論 1969) ※ 70s日本でも多くの理論研究 (藤本、祖父江、土佐…/家、野口、青木…) 1980s: 先駆的なN体計算 (J. Sellwood) 1990s~2000s: 渦状腕研究 (銀河力学研究)の氷河期? 2010s:N体/流体計算による再ブーム "準定常"密度波理論 (Lin & Shu 1964) の被引用数 (907件 2020/11/07) Dobbs & Baba (2014) Ref. citations to ref. papers review paper Non ref. citations to ref. papers 40 Galactic shock theory Fujimoto 1968 (藤本光昭) Roberts 1969 30 **Global Stability** Iye 1979 (家 正則) Aoki, Noguchi (野口正史), Iye 1979 20 N-body simulations Sellwood & Carlberg (1984) 10 0 1969 1980 1991 2002 2013

Bertin & Lin (1996)'s

45

text book

Toomre (1977)'s review paper before I was born

2010年頃以降の主な論文

Hydrodynamic simulations

- Wada & Koda 2004; Wada 2008 (和田桂一) Kim, W-T. & Ostriker 2002,2006, Dobbs & Bonnell 2006, 2007, 2008 Dobbs & Pringle 2009, 2010 Dobbs et al. 2011a, 2011b, 2012, 2014 Pettitt, Dobbs, JB, et al. 2020 ...etc *N*-body/hydrodynamic simulations Baba et al. 2009,2010,2013,2015,2016 Fujii, JB et al. 2011 (藤井通子) Wada, JB et al. 2011 Grand et al. 2012a,b,2013,2014 D'Onghia et al. 2013 Kumamoto & Noguchi 2016 Sellwood 2010,2011,2012… Sellwood & Carlberg 2014, 2019, 2020 ...etc **Observational tests** Baba et al. 2018 (w/ Gaia)
 - Miyachi, incl. JB 2019 (w/ Gaia)
 - many papers.

馬場淳一@CfCA UM 2021/1/20

expected azimuthal offset star-gas

Baba et al. 2015, PASJ

表 8.1	ヒッパルコスとフ	ガイアの主な比較.	
	ヒッパルコス	ガイア	
稼働期間 等級限界	1989–1993 12 等	2013–2021 → end 2022 (approved) 20 \clubsuit → end 2025 (indicative)	
コンプリートネス 天体数	7.3–9.0 等 120,000	~20 等 10 ⁹	
観測精度	~ 1 milliarcsec	4 μ arcsec (V = 10 等)	
視線速度	なし	10-15 μ arcsec (V = 15 等) 200-300 μ arcsec (V = 20 等) 15 km s ⁻¹ (V < 16-17 等)	

千葉, "銀河考古学", 2015, 表8.1

quick reviews

A dynamically young and perturbed Milky Way disk

Sgr. Dwarf銀河の近点通過の影響か? (e.g. Laporte et al. 2018) 棒状構造 (バー) のbucking運動の痕跡か? (Khoperskov et al. 2018)

→ 銀震学 (Galactic Seismology)

quick reviews

MACHINE-LEARNING TECHNIQUES REVEAL HUNDREDS OF OPEN CLUSTERS IN GAIA DATA

>2,000 open clusters:

~1,200 open clusters confirmed by Gaia

582 "new" open clusters identified via a machine learning method

Previously known open clusters are shown with red dots (left) or with the density map in red (right) (Cantat-Gaudin et al. 2018, 2019a and Castro-Ginard et al 2018, 2019). The black dots represent the newly found open clusters (Castro-Ginard et al. 2020)

JASMINEプロジェクトでの研究:

運動の積分 (作用積分) 空間でのクラスタリング探査で、 より時間が破壊から経過した星団も探査できるはず

- GRAPEで星団破壊シミュレーション (2019年度修論) 49
- 作用積分空間でのクラスタリングの機械学習探査(進行中)
- → 太陽系母星団 (太陽兄弟星)の残骸が見つかるか??
- → 銀河中心領域へも応用できるか??

Castro-Ginard et al., A&A, 618, A59, (2018) Castro-Ginard et al., A&A, 627, A35, (2019) Castro-Ginard et al., A&A, 635, A45, (2020) <u>https://www.cosmos.esa.int/web/gaia/iow_20200514</u>

5. 赤外線位置天文観測衛星 *JASMINE*

星の距離と運動の超高精度測量で 天の川銀河の歴史の核心に迫る

公式ページをリニューアルしました!!(2021/1/15) http://jasmine.nao.ac.jp/

赤外線位置天文観測衛星「JASMNE」

PI: 郷田直輝 (国立天文台)

日本独自の衛星計画 & 日本初の位置天文観測衛星

概要:

∨宇宙空間に天文観測衛星を打ち上げて3年間の観測 (2020年代後半打ち上げ)

✓赤外線波長で観測 (1.1 - 1.7µmの近赤外線波長 Hwバンド TBD)

- Gaia (ESA) が不得意な星間減光の強い銀河中心領域や銀河円盤面の観測に優位

✓ 銀河系中心部 (銀河中心核バルジ)の星までの25µ秒角精度で測定

- 年周視差<25µas & 固有運動<25µas/yr for Hw < 12.5 mag 約12,000 個 のうちバルジ星 7,000個 (5,000 in Region-1, 3,000 in Region-2)
- 固有運動<125µas/yr for 12.5< Hw <15 mag. 約86,000 個 のうちバルジ星 67,000個 (45,000 in Region-1, 26,000 in Region-2)
- 多数枚の撮像データを合成し星の位置精度を向上

一日で 320回の撮影x16領域、1シーズン90日間で約 46 万枚

✓ 観測結果を位置天文カタログとして広く一般公開 (2030年頃) ← 10年後

・ ・ ・ 速度の観測から 3大イベントの解明を目指す。

The Galaxy in the Context

Bland-Hawthorn & Gerhard, ARA&A, 54, 529, (2016)

JASMINE Consortium

Japan Astrometry Satellite Mission for INfrared Exploration (赤外線位置天文観測衛星)

https://sites.google.com/site/smalljasmineconsortium2019/home

この度、JAXA宇宙科学研究所により「JASMINE (小型JASMINE)」が 公募型小型計画宇宙科学ミッション3号機(2020年代半ば打ち上げ予定) に選定されました。JASMINEは、世界で初めて近赤外線(Hw-band)での 位置天文測定を宇宙で行う衛星で、銀河中心核バルジ領域(R<~200 pc) の様々な年齢の星の分布と運動を詳細に測定することにより、銀河系全体の 進化形成史を理解する上での核となる銀河中心領域の進化の歴史を読み解く ことと、低温星周りの生命存在可能領域の惑星の探査を主な科学目標(キー プロジェクト)としています。

銀河中心考古学の目標精度は、Hw<12.5 mag の天体で25 µasの年周視 差精度、Hw<15 mag の天体で125 µas/yr の固有運動精度です。最近の Gaia 衛星の成果に代表されるように、位置天文データは、新たな次元の データを提供するものであり、主な目標以外にもデータを多くのサイエンス にも応用できるはずで、さらに銀河中心領域方向以外の興味深い天体をター ゲットにすることも可能です。このように国内の多くのサイエンスコミュニ ティーにとって有益なデータを提供していきたいと考えております。

JASMINEプロジェクトでは、JASMINEの科学目標を達成し、創出される データをより多くの科学者にとって有益なものとするためには、55その目標を 共有するコンソーシアムが必要ということで、JASMINE Consortium (JC) を発足することにしました。

2019年8月立ち上げ

Constats: milkyway.bulge.ws@gmail.com (Daisuke Kawata, Junichi Baba)

JC Working Groups

ミッション目標に向けたより多くのサイエンスに有益なカタログ作りの準備(WG-A)、科学目標達成に向けてのシミュレーションデータなどを使っての準備(WG-B)、JASMINEの成果を広く社会に還元するためのアウトリーチ活動(WG-C)を目的とします。

Working Groupに参加して活動したい人は、 オフィシャルサイトにアクセスし、参加登録を!

JASMINE

Consortium

• WG-A Data Analysis (lead by Yoshiyuki Yamada)

- WGA-1: System Architecture JASMINE end-to-end simulation
- WGA-2: Data Analysis and Validation (end-to-end simulation working group)
 - Input Catalogue, Image Simulator, Astrometry and Time Series Photometry
- WGA-3: Data Archive
 - Including collecting spectroscopic data, Cross-match, Stellar Parameters

• WG-B Science Validation and Preparation (lead by Daisuke Kawata)

- WGB-1: Galactic Center Archaeology 銀河中心考古学
 - Galaxy formation and evolution, IMBHs, Star-forming regions, Compact objets, Variable stars, Binaries, Microlensing, Seismology
- WGB-2: Exoplanets 系外惑星探查
 - Transit, microlensing, astrometry exoplanet detection + Solar system objects.

• WG-C Outreach (lead by Elizabeth Tasker)

衛星打ち上げ後は、準備した体制を元に、データ公開に向けて、データカタログ、Science Validation の論文など の作成に携わって頂きます。打ち上げ前の準備の段階でも、シミュレーションデータや、Gaia などのすでに存在す るデータを使って科学的検証をする必要があるので、多くの論文が発表できるはずです。アーリーキャリアの方達 にも多く参加して頂いて、衛星プロジェクトへの貢献を通して、キャリア形成に繋げていただきたいです。また、 その支援もコンソーシアムとして行なっていきたいと思います。

Review Papers

Dynamics/Formation/Evolution of the Milky Way

- Bland-Hawthorn & Gerhard, 2016, ARA&A, 54, 529
 - 天の川銀河構造に関する包括的なレビュー。ただし、Gaia以前の結果。
- Barbuy, Chiappini & Gerhard, 2018, ARA&A, 56, 223
 - バルジの化学動力学進化に関するレビュー。近年の大規模サーベイによる進展を含む。
- Helmi, 2020, ARA&A, **58**, 205
 - ハロー (streams/substructures) に関するレビュー。Gaia DR2による進展を含む。
- Shen & Zheng, 2020, RAA, **20**, 10
 - 天の川銀河の棒状構造・渦状腕の動力学に関するレビュー。

Galactic Dynamics (Bars/Spirals; in general)

- Sellwood & Wilkinson, 1993, RPPh, 56, 173
 - バーの動力学に関するレビュー。やや古いが本質的。
- Sellwood, 2014, RvMP, 86, 1
 - バー不安定とsecular evolutionの包括的レビュー。
- Dobbs & <u>Baba</u>, 2014, PASA, **31**, 35
 - 近年の数値計算に基づく渦状腕の動力学に関するレビュー。

教科書

- Binney & Tremaine, "Galactic Dynamics", 2007
- 千葉柾司, "銀河考古学", 2015